
The Computational Notebook Paradigm for
Multi-Paradigm Modeling

Bentley James Oakes∗†, Romain Franceschini∗‡, Simon Van Mierlo∗†, Hans Vangheluwe∗†
∗University of Antwerp, Belgium
†Flanders Make vzw, Belgium
‡University of Corsica, France

{Bentley.Oakes, Simon.VanMierlo, Hans.Vangheluwe}@uantwerpen.be, R.Franceschini@univ-corse.fr

Abstract—Computational notebooks are gaining widespread
acceptance as a paradigm for storage, dissemination, and re-
production of experimental results. In this paper, we define the
computational notebook paradigm (CNP) consisting of entities and
processes and discuss how the reproducibility of the experimental
process and results is enhanced by each element. This paper also
details the interactions of CNP and multi-paradigm modeling
(MPM), with an aim of understanding how to support MPM
within the CNP, and improve the reproducibility aspects of both
the CNP and MPM.

Index Terms—Computational notebooks, Multi-paradigm
modeling, Paradigms, Reproducibility, Experimental Process.

I. INTRODUCTION

To have scientific value, scientific experiments must be
repeatable and their observations reproducible. This enables
the wider community to explore and understand the underlying
system under study. Without precisely defining the experi-
ment’s starting condition, set-up, process, and expected results,
peers may be unable to reach the same conclusions.

Experimental notes can be recorded either on paper or
increasingly in a digital form. The entries in these notebooks
may cover a wide range of media, such as a combination of
sketches, plots, text, code, or (in a digital system) audio and
video. A well-structured notebook thus represents the owner’s
investigation and understanding of the system under study
by recording the process of experimentation with the system.
When these results are documented (such as in a scientific
paper) and disseminated to others, the community gains the
contained insight about the studied system.

Computational notebooks offer an executable way for the
user to perform experimentation and dissemination activities.
A key aspect is that users may write both text and code
together, and results are stored directly alongside the code
which produced it. When disseminated, others may also ex-
periment further by changing parameters and (re-)executing
the notebook. An example of this documentation artefact is
a computational notebook produced for gravitational wave
education [1]. This precise record of the experimental process
therefore enhances the reproducibility and learning opportuni-
ties of the experiments. In fact, the visual and interactive prop-
erties of digital notebooks may be superior to typical paper-
like representations when presenting scientific results [2], [3].

This paper examines how the Computational Notebook
Paradigm (CNP) can be applied to Multi-Paradigm Model-

ing (MPM), which advocates the explicit modeling of every
(relevant) aspect of a system, at the most appropriate level(s)
of abstraction, using the most appropriate formalism(s), and
with explicit modeling of the development process(es) [4].
Our contributions are a discussion about the CNP enhancing
reproducibility in experiments, definition of CNP entities and
processes, and an examination how MPM and the CNP com-
bine to increase reproducibility in CNP and MPM activities.

The notion of reproducibility in scientific experiments is
introduced in Section II. Computational notebooks themselves
are presented in Section III, along with a short example. The
elements of the CNP are examined in Section IV, discussing
the entities and processes of CNP and how they relate to
reproducibility. The interactions between the CNP and MPM
are examined in Section V, highlighting how MPM can
be supported within the CNP, and how the reproducibility
aspects of both the CNP and MPM can be improved. Finally,
Section VI presents a brief conclusion and discussion of future
work.

II. REPRODUCIBILITY

Among the criteria allowing peers to assess the scientific
quality of an experimental study is reproducibility, which
guarantees that a particular phenomenon can be (re-)observed
in a well-defined context [5]. Providing initial and experimen-
tal conditions thus allows others to corroborate or contradict
the conclusions of an experiment. In experimental science,
such criteria are generally ensured through data recording,
as well as precise material and method documentation [3].
The primary record of a researcher is the laboratory notebook,
which is then published as a scientific publication in a paper-
like format (such as an electronic document).

However, as scientific fields increasingly use computational
science to conduct numerical experiments, reproducibility con-
cerns arise in the digital world [5]. For example, the ‘repro-
ducibility crisis’ in biomedical research means that clinical
results cannot be confirmed [3]. To avoid these issues, the
results of an experiment must be reproducible to accurately
document and disseminate results. This enables peers to verify,
follow along with the explanations contained, and to validate
the results.

Dalle proposes four levels of reproducibility for computa-
tional experiments [6], depending on the availability of the



source code, the non-deterministic aspects of the calculation,
the similarity of the experimental setup, and of the results.
Stodden et al. define five levels according to the availability
of tools, results, data, and documentation [7].

Schnell proposes a terminology for classifying repeatability,
replicability and reproducibility, as these terms can commonly
be confused [3]. Repeatability is the ability for the same team
with the same methods to obtain the same results (with some
measure of precision). Replicability is when a different team
can obtain the same results with the same methods. Finally,
reproducibility is the ability of a different team with different
methods to obtain the same results. Towards this goal, com-
putational notebooks (CN) are envisioned to support all three
of repeatability, replicability and reproducibility [8], [9]. They
are regarded as an appropriate media to support repeatability
and replicability [3], [10], while the documentation process of
notebooks (see Section IV-B2) aims to disseminate knowledge
about the system to encourage reproducibility.

Koop et al. discuss an architecture for maintaining exe-
cutable papers [11], which are conceptually similar to com-
putational notebooks. Their work defines seven components
in executable papers: text, workflows, data, results, source
code, libraries, and visualizations. To ensure that authors,
readers, reviewers, and publishers can reproduce the paper, a
provenance-based system is presented. Provenance is defined
as “the documentation of exactly how data, experiments, and
results were generated” [11]. For the above components, the
full history of modifications is stored in a versioned manner
with explicit dependencies, allowing the user to track exactly
how each part of the experiment was conducted.

However, having the correct version of the components
above, along with an exact copy of the experimental ma-
chine, may not be sufficient to reproduce an experiment [12].
This is due to the state of the computations, which may
be partially “hidden” and not captured by the notebook or
documentation. For example, a seed for a simulator’s random
number generator may not be initialized every time by the
notebook, rendering experiments impossible to reproduce.
This implies that the state of the computation, as well as
all relevant initialization parameters must be made explicit
in the computational notebook paradigm for reproducibility.
In the software engineering domain, this capturing of ini-
tialization and state may be performed by virtualization or
containerization technologies [13]. A model-based engineering
approach is to formalize the experimental frame of models in
the system [14]. Section V-A examines how MPM techniques
(including frames) can enhance reproducibility by explicitly
modeling the initialization, workflow, and execution of a
system.

III. COMPUTATIONAL NOTEBOOKS

This section presents computational notebooks and an ex-
ample. Section IV then details the paradigm by referring to
this example.

A. Computational Notebooks

The computational notebook (CN) concept first appeared in
the late 1980s [9]. Similar to a read-eval-print loop (REPL)
as in a shell, a CN allows code to be executed and the results
to be shown directly beneath. However, in a CN, text, images,
and other media can also be intertwined with the code. This
can be used to add explanation to the code and results, offering
a record of insights. Code and results are persisted in the
notebook as well, offering a record of the activities.

Through their mirroring of the structure of a physical labo-
ratory notebook, CNs provide a way to gather documentation,
workflows, and data within the same document just as their
physical counterpart does. However, CNs have added value
due to their interactive execution and visualisation. Collabora-
tion is also possible in CNs. If enabled by the underlying tech-
nology, multiple users may be experimenting and documenting
in a CN at the same time, thus simultaneously disseminating
the results [15], [16].

An important component of CNs is the ability to re-execute
pieces of code (stored in Cells) at the user’s direction with a
Kernel, such that the corresponding Output Cell is updated.
These Kernels are processes to execute types of code cells.
Some notebooks only have one code kernel, such as Mathe-
matica notebooks1 and Matlab “live-scripts”2. Other notebooks
such as the example below have a variety of heterogeneous
kernels, including LATEX, Markdown, and Python kernels.

Section III-B below demonstrates the popular Jupyter [8]
implementation of a CN by reproducing (with minor edits) the
text, code, and figures contained in an example notebook. Code
cells are represented below as outlined boxes marked with
In:. When executed, they produce the output which immedi-
ately follows. As an example, the first cell shows LATEX code
marked with the special tag %%latex, which produces the
equations for the bouncing ball model in Equation 1.

B. Bouncing Ball Notebook

The aim of this notebook is to detail the experimentation
results for modifying and optimizing the parameters of a
bouncing ball model. This model is taken from the examples
of the PyFMI library3, which simulates models using the
Functional Mock-up Interface (FMI) standard4. The intent of
the FMI standard is to present system components as black
boxes, where internal details are hidden. This is representative
of industrial systems with intellectual property concerns.

The bouncing ball equations and initial parameters are:
In: %%latex
\begin{equation}
\frac{dh}{dt} = v; \frac{dv}{dt} = -g;\\
\mathit{when}˜h < 0˜\mathit{then}˜v := -e * v;\\
\mathit{initial:}˜e = 0.7, g = 9.81
\end{equation}

1http://www.wolfram.com/notebooks/
2https://www.mathworks.com/help/matlab/matlab prog/

what-is-a-live-script-or-function.html
3https://pypi.org/project/PyFMI/
4https://fmi-standard.org/



dh

dt
= v;

dv

dt
= −g;

when h < 0 then v := −e ∗ v;
initial : e = 0.7, g = 9.81

(1)

Import PyFMI and load the Bouncing Ball FMU:
In: from pyfmi import load_fmu
model = load_fmu(’bouncingBall.fmu’)

Set the initial height to 100, and simulate for 20 seconds:
In: model.set(’h’,100)
result = model.simulate(final_time = 20.)

Define a plot function plot(result) and call it:
In: def plot(result):
--omitted for brevity--
plot(result)

1) Parameter Exploration: Reset the model, set the height
to 200, and simulate. This experimentation could be repeated
to explore the behaviour of the bouncing ball.
In: model.reset()
model.set(’h’,200)
result = model.simulate(final_time = 20.)
plot(result)

2) Parameter Optimization: The goal is to determine a
height such that the ball bounces precisely halfway through
the simulation. First, define a function to return the height at
that time.
In: def halfway_height(init_h):
model.reset()
model.set(’h’, init_h)
result = model.simulate(final_time=20.)
halfway_index = len(result[’h’])//2
return result[’h’][halfway_index]

Then, use an optimization library to choose a height be-
tween 50 and 200 metres which minimizes that height.
In [20]: import scipy
opt_result = scipy.optimize.brute(halfway_height,
ranges=((50, 200),)
print(opt_result)

[84.91984558]

When the ball starts off at around 85 m high, it will bounce
halfway. Plot these results to confirm.

In: h = 84.91984558
print("Height: " + str(halfway_height(h)))
model.reset()
model.set(’h’, h)
res = model.simulate(final_time=20.)
plot(res)

Height: -0.11444301199967911

IV. COMPUTATIONAL NOTEBOOK PARADIGM

This section investigates the computational notebook
paradigm (CNP), using the bouncing ball example in Sec-
tion III-B as a running example. This examination is divided
into focusing on the entities and the processes involved in the
paradigm. Section V then builds on this section to examine
how the CNP can be used for multi-paradigm modeling to
enhance reproducibility.

A. Entities

The entities involved in the notebook paradigm are repre-
sented by a class diagram in Figure 1, which has been created
in the AToMPM modelling environment [17].

The core element of the computational notebook is the
Notebook itself, which is structured as a linear sequence of
Cells. As shown in the example notebook in Section III-B,
these cells can contain a variety of typed elements, such as
executable code, text, plots, or other media. The left-hand side
of Figure 1 shows User(s) of the Notebook(s), where the user
accesses (creates, reads, updates, deletes) multiple notebooks.
A notebook itself may be linkedTo other notebooks, as in the
laboratory notebook management system Prism [18]. A note-
book can also produce documentation artefacts such as a PDF
or LATEX code. For example, the LATEX code for Section III-B
was exported (with edits for formatting and clarity) from the
Jupyter notebook used for the experimentation.

Cells are divided into pairs of InputCells and OutputCells.
Cells are typed by a particular Language, which captures the
syntax and semantics for that Cell. When the InputCell is
executed, the associated Kernel for that Language receives the
code in the InputCell and executes it. Results are passed to a
language-specific Visualizer, which produces an OutputCell to
be paired with the InputCell.

For example, in the example notebook, most InputCells are
typedBy the Python language. When code is executed, such as
to plot the simulation results, the code is communicated to the
Python Kernel. This kernel produces results, which are passed
to an appropriate Visualizer (such as a plotter) to produce the
OutputCell. Multiple kernels are present in that example, such
as the Markdown kernel to produce text, and the LATEX kernel
to produce the equations.



CellUser

Notebook

DocumentationArtefact

InputCell OutputCell

Language

Kernel

Visualizer

a
cce

sse
s

*

linkedTo

*

p
ro
d
u
ce
s

*
*

containedCells
*

*

pairedWith

1

1

typedBy* 1

e
xe
cu
te
d
B
y

1
1

outputsTo

1
..*

1..*

re
n
d
e
rs
To

1
1

*

1
{ordered}

Fig. 1: Computational notebook paradigm entities.

B. Processes

As a computational notebook can represent the endless
possibilities of a paper notebook, it is impossible to fully
capture the involved processes at a fine-grained level or in
a complete activity diagram. Instead, this section highlights
the main activities in the paradigm: experimentation and doc-
umentation. Reproducibility is key for both processes. During
the experimentation process, reproducibility enables users to
accurately reproduce results. Additionally, when the notebook
or other documentation artefact is disseminated, those who
wish to reproduce the results or to experiment with the system
further rely on the ability to obtain the same results, as
described in Section II.

1) Experimentation: Experimentation is a crucial activity in
computational notebooks, where the user applies the scientific
method of hypothesizing and designing experiments, as well as
the classic coding processes of writing and modifying code.
In the notebook, the user repeatedly modifies and executes
cells to produce desired results, based on their intentions and
the properties of interest. This refinement loop continues until
the produced results are as the user expects, or the user has
achieved some understanding of the system. For example,
Section III-B demonstrates a notebook for experimenting with
the parameters of a system. The ability to modify small
selections of code and immediately see the results reduces the
iteration process in experimentation, allowing for fast insights
on the system’s properties [9]. The ability to execute multiple
language kernels in one notebook also allows the user to avoid
switching language tools or contexts.

2) Documentation: The documentation process of the note-
book paradigm may be intertwined with the experimentation
process or may be a separate process. For example, the compu-
tational notebook in Section III-B explains how to explore and
optimize the height parameter for a bouncing ball simulation.
Along with text and images, other media may also be present
in this documentation, such as interactive diagrams [19]. This
documentation may be created for different purposes, such
as recording observations, thoughts and intentions about an

experimental process, instructions, or to document understand-
ings about a system.

Another portion of the documentation process is the dis-
semination of results as a documentation artefact such as a
PDF or a copy of the notebook itself. This allows for different
levels of reproducibility (see Section II), such as producing
documentation about a system for reproducibility, or offering
code and techniques (or the entire notebook) to replicate the
results for repeatability and replicability. Dissemination also
has a greater scientific goal, in that it allows others to better
understand the behaviour of a system when they can modify
the models involved [19]. Proper documentation and dissem-
ination therefore allows others to re-start the experimentation
process.

V. COMPUTATIONAL NOTEBOOK PARADIGM FOR
MULTI-PARADIGM MODELING

This section examines the support needed for reproducible
multi-paradigm modeling (MPM) in the computational note-
book paradigm (CNP). First, Section V-A presents three im-
provement areas for enhancing the reproducibility of MPM
activities in the CNP. Then, the following sections detail how
the entities and processes of the CNP can be employed to
support the three orthogonal components of MPM: multi-
abstraction, multi-formalism, and explicit workflows [4].

A. Enhancing Reproducibility

The CNP has a high focus on reproducibility as this is
required for the key processes of experimentation and dissemi-
nation (Section IV-B). As the next sections discuss, MPM also
aids reproducibility with the explicit modeling of abstractions,
formalisms, and workflows.

An immediate point of compatibility between MPM and the
CNP is the notion of typing code cells in the CNP and execut-
ing them with a kernel. This maps directly onto conformance
and executing a formalism with precise semantics in MPM. We
have however identified three areas (model frames, domain-
specific languages, and explicit history and traceability) where
the reproducibility of MPM activities in the CNP could still
be improved. Further development in these areas would help
ensure that the properties, design, and workflow of a system
can be explicitly modeled to a sufficient degree in a notebook,
such that the result will be exactly reproducible when the
notebook is shared or accessed at a later time.

1) Model Frames: The experimental conditions of a system
must include the initial state and parameters for reproducibil-
ity. For example, the bouncing ball example in Section III-B
is only reproducible with the same height and elasticity pa-
rameters for the ball. Model frames [14] capture this required
information, A model frame consists of a) a modeling activity
such as calibration or verification, with inputs, outputs, and a
process description, b) a context with objectives, assumptions,
and constraints, and c) zero or more sub-frames.

This frame information could be contained within a compu-
tational notebook at three levels: not-at-all, as informal code
and text, or as (a) formalized decision process(es), which



ensures that the models and processes are valid at all times. As
an example, consider a model frame which is (metaphorically)
constructed around a code cell in the bouncing ball notebook.
This model frame would only allow the simulation code
inside to be executed if all necessary model parameters were
set within valid ranges, such as a positive height of the
ball. This model frame may also require the state of the
cell’s kernel to be in a pre-determined state, removing the
possiblity of under-specified behaviour (see Section II). This
technique of experimental condition modeling therefore raises
the reproducibility of experimentation within the CNP.

2) Domain-Specific Languages (DSLs): DSLs are one ap-
proach to managing complexity in a system, such that the
model’s language encodes concepts from the system itself,
rather than the solution domain [4]. DSLs thus aid repro-
ducibility by focusing on the essential complexity of a system
such as the parameters and processes.

Adding DSLs to the CNP requires the notion of language
engineering where a meta-modeling language is developed in
the notebook and used to type models. This dynamic creation
of languages requires support in the CNP, as custom languages
will need to be mapped (through a model transformation) to
known semantics for simulation, debugging, or verification
operations. The conformance relationship must also be present
in the CNP whereby one model conforms to the syntax and
semantics of its meta-model. This is required for a-posteriori
typing, where the models can be re-typed by other meta-
models [20]. With this support, models and meta-models can
co-evolve during an experimentation process in the notebook,
allowing the user to incrementally build the DSL and the
models during experimentation or ideation.

3) History and Traceability: The iterative nature of cell
execution in the CNP means that previous changes in code
and results are lost when the cell is executed again. This is
especially problematic in the case of a model in a cell which
conforms to a meta-model in a different cell. It is not feasible
to repeatedly ‘copy-paste’ these cells to retain old versions
and avoid momentary conformance failure, as there may be
rapid iterations of both model and meta-model.

The computational notebook paradigm may therefore need
to be enhanced with history for each cell to support MPM
activities such as domain-specific language creation and itera-
tion. This history could enable different versions of a cell to be
retained, allowing for versioned traceability links to retain the
proper conformance information. This history also enhances
the reproducibility of the notebook, as an interested peer could
examine the precise evolution of the model and meta-model.

B. Notebook Entities for MPM

The entities in the notebook paradigm can be divided into
two relevant parts to discuss their interaction with MPM: a)
users and notebooks, and b) blocks, language, and kernels.

1) Users and Notebooks: As described in Section IV-A,
the relationships between users and notebooks in the computa-
tional notebook paradigm include Users accessing Notebooks,
which may be linkedTo other Notebooks.

There can be multiple levels of abstraction and differing
formalisms within and between these notebooks. For exam-
ple, two notebooks (or two different cells) may explain a
system at different levels of abstraction. As notebooks may
be linked together in a notebook management system (such as
Prism [18]), this supports reasoning of a system at different
levels of abstraction or different formalisms, or comparison of
the results of differing approaches. For example, the notebook
in Section III-B could be linked to another notebook repre-
senting the bouncing ball model in the Causal-Block Diagram
formalism [21] with exact semantics instead of the black-box
model presented.

The explicit modeling of workflows in MPM could also
involve multiple users and notebooks. As an example, an
industrial activity may be represented as an MPM process
divided across different stakeholders who perform component
design and verification activities. These activities may take
place in multiple notebooks or in different cells within those
notebooks. Workflows could also be modeled inside the note-
book itself to define cell execution, although the linear nature
of a notebook may make this less appropriate.

2) Cells, Languages, and Kernels: The key feature in the
CNP is code Cells which can be (re-)evaluated at any time.
As mentioned in Section IV-A, these cells are typed by a
particular language with an associated kernel. To place these
entries within an MPM context, cells are typed by a particular
formalism (including domain-specific languages) with syntax
and semantics, and (if executable) executed by (a) simulation
kernel(s) for that formalism. Different cells within the same
notebook may be typed by different formalisms and executed
by heterogeneous kernels.

The multi-abstraction and multi-formalism aspects of MPM
are thus naturally represented by the typing of notebook
cells. However, explicit models of the state and semantics
of the underlying kernels must also be available, such that
experiments can be restarted from the same initial state. This
requires techniques such as model frames (Section V-A1).

C. Notebook Processes for MPM

This section details the support required for combining
MPM with the two core processes in the notebook paradigm:
experimentation and documentation.

1) Experimentation for MPM: Experimentation within the
MPM context is a broad umbrella encompassing many ac-
tivities, such as ideation, model transformation, simulation,
and verification. Each of these activities provides a view on
the system, offering insight by representing the system in
different abstraction levels and formalisms. As the user creates
and iterates on multiple notebooks or cells focused on these
different views, their understanding of the system and its
behaviour increases.

To support this multi-abstraction and multi-formalism ex-
perimentation, heterogeneous kernels must be available in the
computational notebook so that the user may use the “most
appropriate” language. As the user may be creating their
own domain-specific languages (see Section V-A2), techniques



may need to be developed such that semantics from different
modeling languages can be (semi-)automatically combined for
simulation, debugging, or other activities.

The combination of the computation notebook paradigm and
multi-paradigm modeling offers the explicit modeling required
for a reproducible global view of a complex system, including
cyber-physical systems which involve multiple domains, with
properties and workflows for each. During the experimentation
process, the components of the full system evaluation would
exist in the same document: a) the properties of interest, b)
the design, and c) the processes for checking the properties
against the design. Throughout the evolution of the system,
the properties would then be checked against the design using
the processes as needed. The explicit workflow component
of MPM may also be beneficial, as an explicit version of an
experimentation activity could be used for (semi-) automatic
enactment [22]. The CNP also offers support for full docu-
mentation and dissemination such that full-system evaluation
can be performed by other groups at other times, ensuring full
reproducibility (see Section II).

2) Documentation for MPM: As described in Sec-
tion IV-B2, computational notebooks can be used to document
systems and improve the understanding of the system under
study. In the MPM context, this can be employed for edu-
cational or training purposes. For example, a notebook could
contain an explanation of how property satisfaction changes
with the level of abstraction, along with the relevant models
and verification code. This would allow the user to experiment
with these representations and understand their effect.

Documentation of results is also aided by explicit modeling
of the system and workflows. For example, the documentation
of a system’s workflow could be made actionable by including
an explicit representation such as an Formalism Transforma-
tion Graph and Process Model (FTG-PM) [22]. This would
enable other readers of the notebook to execute that workflow
themselves, or to experiment with modifications.

VI. CONCLUSION

This paper has presented reproducibility in the context of
the computational notebook paradigm (CNP). The entities and
processes involved in the paradigm have been examined, as
well as the combination with multi-paradigm modeling (MPM)
to enhance reproducibility in both the experimentation and
documentation processes.

Future work will implement the above ideas to verify their
practicality, especially with regards to the complexities of
language engineering and traceability (Section V-A). Addition-
ally, we will examine the integration of the Modelverse [23]
into the CNP. The Modelverse is a tool for language and
process engineering, performing model operations, and acts
as a repository of models, languages, and processes. The
Modelverse could therefore be a comprehensive kernel to sup-
port MPM activities, such as providing model transformation
enactment and full conformance checks on all artefacts.

As computational notebooks become more collaborative, it
is also important to provide robust model management tools

and techniques. If multiple users modify the same model cell
or evolve a meta-model cell, our future work will make clear
how inconsistencies are detected and resolved through such
techniques as model difference detection and resolution, or
co-evolution of models and meta-models.

REFERENCES

[1] Gravitational Wave Open Science Center, “Binary black hole signals
in LIGO open data,” https://www.gw-openscience.org/GW150914data/
LOSC Event tutorial GW150914.html, 2017.

[2] J. Somers, “The scientific paper is obsolete,” The Atlantic,
04 2018, https://www.theatlantic.com/science/archive/2018/04/
the-scientific-paper-is-obsolete/556676/.

[3] S. Schnell, ““Reproducible” Research in Mathematical Sciences Re-
quires Changes in our Peer Review Culture and Modernization of
our Current Publication Approach,” Bulletin of Mathematical Biology,
vol. 80, no. 12, pp. 3095–3105, Sep. 2018.

[4] P. Mosterman and H. Vangheluwe, “Computer automated multi-
paradigm modeling: An introduction,” Simulation, vol. 80, no. 9, pp.
433–450, 2004.

[5] R. Franceschini, P.-A. Bisgambiglia, and D. R. Hill, “Reproducibility
study of a PDEVS model application to fire spreading,” in Proceedings
of the 50th Computer Simulation Conference. Society for Computer
Simulation International, 2018, p. 29.

[6] O. Dalle, “On reproducibility and traceability of simulations,” in 2012
Winter Simulation Conference. IEEE, Dec. 2012, pp. 1–12.

[7] V. Stodden, J. Borwein, and D. H. Bailey, “Setting the default to
reproducible in computational science research,” SIAM News, vol. 46,
no. 5, pp. 4–6, 2013.

[8] T. Kluyver et al., “Jupyter notebooks-a publishing format for repro-
ducible computational workflows,” in ELPUB, 2016, pp. 87–90.

[9] S. Wolfram, “What is a computational essay?” https://blog.
stephenwolfram.com/2017/11/what-is-a-computational-essay/, 2017.

[10] B. G. Fitzpatrick, “Issues in Reproducible Simulation Research,” Bul-
letin of Mathematical Biology, vol. 81, no. 1, pp. 1–6, Sep. 2018.

[11] D. Koop et al., “A provenance-based infrastructure to support the life
cycle of executable papers,” Procedia Computer Science, vol. 4, pp.
648–657, 2011.

[12] P. Ivie and D. Thain, “Reproducibility in scientific computing,” ACM
Computing Surveys (CSUR), vol. 51, no. 3, p. 63, 2018.

[13] Jupyter et al., “Binder 2.0-reproducible, interactive, sharable environ-
ments for science at scale,” Proceedings of the 17th Python in Science
Conference, 2018.

[14] S. Klikovits, J. Denil, A. Muzy, and R. Salay, “Modeling frames,” in
CEUR workshop proceedings, 2017, pp. 315–320.

[15] B. Ragan-Kelley et al., “Collaborative cloud-enabled tools allow rapid,
reproducible biological insights,” The ISME journal, vol. 7, no. 3, p.
461, 2013.

[16] F. Perez and B. E. Granger, “Project Jupyter: Computational narratives
as the engine of collaborative data science,” Grant Proposal, 2015.

[17] E. Syriani et al., “AToMPM: A web-based modeling environment,” in
International Conference on Model Driven Engineering Languages and
Systems, 2013, pp. 21–25.

[18] A. Tabard, W. E. Mackay, and E. Eastmond, “From individual to
collaborative: the evolution of Prism, a hybrid laboratory notebook,”
in Proceedings of the 2008 ACM conference on Computer supported
cooperative work. ACM, 2008, pp. 569–578.

[19] B. Victor, “Explorable explanations,” http://worrydream.com/
ExplorableExplanations/, 03 2011.

[20] J. De Lara, E. Guerra, and J. S. Cuadrado, “A-posteriori typing for
model-driven engineering,” in 18th International MODELS Conference.
IEEE, 2015, pp. 156–165.

[21] B. Denckla and P. J. Mosterman, “Formalizing Causal Block Diagrams
for modeling a class of hybrid dynamic systems,” in Proceedings of
Conference on Decision and Control. IEEE, 2005, pp. 4193–4198.

[22] L. Lúcio, S. Mustafiz, J. Denil, H. Vangheluwe, and M. Jukss,
“FTG+PM: An integrated framework for investigating model trans-
formation chains,” in International System Design Languages Forum.
Springer, 2013, pp. 182–202.

[23] Y. Van Tendeloo and H. Vangheluwe, “The Modelverse: a tool for
multi-paradigm modelling and simulation,” in 2017 Winter Simulation
Conference (WSC). IEEE, 2017, pp. 944–955.


